Open AI Cellular (OAIC)
Prototyping AI-Enabled Control and Testing Systems for Cellular Communications

Vijay K. Shah, George Mason University

First IEEE NextG Summit 2022
June 14, 2022
Provide an open platform (including, software architecture, library and toolset) for prototyping and testing artificial intelligence-based radio access network (RAN) controllers enabling Next-G networks.
Open AI Cellular (OAIC)

- Open AI-enabled Cellular RAN Controllers (OAIC-C)
- Open AI-enabled Cellular RAN Testing (OAIC-T)
Open AI Cellular RAN Controllers (OAIC-C)

OAIC-C => O-RAN Architecture\(^1\) + 5G NR Protocol\(^2\) + Software Radios\(^3\)

O-RAN component	**OAIC implementation**
0-CU, 0-DU, 0-RU | srsRAN-5G with USRPs, new/enhanced interfaces
E2 interface | O-RAN Software Community (OSC)
RAN Intelligent Controller (RIC) | OSC + real time RIC extension
xApps | Existing and new
5G Core | Open5GS

\(^1\)O-RAN Alliance + New Extensions

\(^2\)Open-source software

\(^3\)Commercial off-the-shelf hardware

Open AI Cellular (OAIC) - An NSF CISE Community Infrastructure Project
OAIC-C: AI Controllers

Existing xApps
1. Hello World - O-RAN Software Community
2. Bouncer - O-RAN Software Community
3. KPIMON - O-RAN Software Community
4. Traffic Steering - O-RAN Software Community
5. Load Prediction - O-RAN Software Community
6. NexRAN (RAN Slicing) - POWDER

New xApps (To be released soon)
1. Age of Information (AoI) Scheduler
2. AI-enabled Schedulers
3. RAN Slicing v2
4. Several xApps (under initial phase)

Beyond xApps
- **zApps/dApps**: Real-time control loop for AI-enhanced PHY layer control
- **Orchestration & Management (O&M) and rApps**

Open AI Cellular (OAIC) - An NSF CISE Community Infrastructure Project
Open AI Cellular RAN Testing (OAIC-T)

OAIC-T Server
- Test Case Interpreter
- OAIC-T Engine
- Report Generation

OAIC-T Actor (s)
- Software
 - Actor Manager
 - AI Core
 - Test Executor

Testing signal
Socket
Feedback

Server
<table>
<thead>
<tr>
<th>Test Script Interpreter</th>
<th>Read test scripts in .xml, .json, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Engine</td>
<td>Manage all actors, set up testing environment, and monitor test status.</td>
</tr>
<tr>
<td>Report Generation</td>
<td>Generate testing reports and access test repository.</td>
</tr>
</tbody>
</table>

Actor(s)
Actor Manager	Manage actor resources and running of test scripts.
AI Core	Provide AI capability, i.e., AI learner instances.
Test Executor	Execute individual test actions defined in test script.
SIM/SDR Adapter	Provide interfaces to the unit under test.

Open AI Cellular (OAIC) - An NSF CISE Community Infrastructure Project
Small/Medium-Scale Testbeds

In-lab Testbed
- Small-scale in-lab 5G O-RAN testbed at VT, MSU and GMU.
- Features near-RT RIC, 5G NSA and SA, developed using srsRAN and O-RAN software, and 2-14 SDRs and ZeroMQ simulator integrated with GNU Radio.

Virginia Tech Cognitive Radio Network (CORNET) Testbed
- Remotely accessible in-building testbed with numerous (nearly 50) USRPs, switches, and virtual machines for development and testing.
- Develop source code, automate testing, deploy applications.
- Users can run sample OAIC experiments or develop and execute new experiments on CORNET.

Open AI Cellular (OAIC) - An NSF CISE Community Infrastructure Project
Large-Scale Testbeds

CCI xG Testbed

- Large-scale 72-node indoor testbed featuring USRPs and MEC capabilities.
- In collaboration with CCI xG Testbed Director, OAIC will be integrated and made available to testbed users

NSF PAWR Platform

- City-scale outdoor testbeds featuring USRPs and other radios, drones (AERPAW), networking and computing resources, FCC licenses
- In collaboration with PAWR PIs, OAIC will be installed and tested on PAWR platforms and made available to their users

Open AI Cellular (OAIC) - An NSF CISE Community Infrastructure Project
OAIC (both OAIC-C and OAIC-T) will a a **fully open-source community research infrastructure**

- **Source code** will be be made available via Github and/or OAIC website
- **OAIC SDR testbed** will be remotely accessible via website and/or terminal

How Do I Benefit?

Use OAIC-C to build your own **AI controllers** (using near-RT RIC and/or RT RIC) for PHY, MAC (and possibly higher layers) RAN functionalities

Use OAIC-T to test your AI-controlled RAN functionalities. (*Source code will be made available as well.*)

All the collected dataset will be made available. You can **remotely** utilize OAIC platform to collect your own dataset for experimental/verification purposes.

All the documentation, services, tools will be made available. **OAIC platform** will be also be **remotely** available.
OAIC Timeline and Roadmap

Open AI Cellular (OAIC) - An NSF CISE Community Infrastructure Project
OAIC 1.0: Code

Link: https://github.com/openaicellular

Currently supports **O-RAN-based 5G NSA networks**
- Based on srsRAN and OSC code
- Both ZeroMQ Simulator and SDRs
- Upgrade to O-RAN based 5G SA networks *(Will be integrated shortly)*.

Prototyping Next Generation O-RAN Research Testbeds with SDRs

Integrating the Near-Real Time RIC, E2 Interface, and Open-Source Cellular Software

Pratheek S. Upadhyaya¹, Aly Sabri Abdalla², Vuk Marojevic³, Jeffrey H. Reed¹, and Vijay K. Shah³

¹Bradley Department of Electrical and Computer Engineering, Virginia Tech, VA, USA
²Department of Electrical and Computer Engineering, Mississippi State University, MS, USA
³Cybersecurity Engineering Department, George Mason University, VA, USA

Emails: {pratheek,reedjh}@vt.edu, {asa298,vuk.marojevic}@mstate.edu and vshah22@gmu.edu
OAIC 1.0: Documentation

Link: https://openaicellular.github.io/oaic/

YouTube Channel: OAIC
https://www.youtube.com/channel/UCpp9hpRisjMP2gwR5OGEmVQ
Website:

- Existing link: https://sites.google.com/msstate.edu/oaic
- New link: www.openaicellular.org (Will be available shortly)

Mailing list: openaicellular@gmail.com

YouTube channel: OAIC

- Link: https://www.youtube.com/channel/UCpp9hpRisjMP2qwR5OGEmVQ
OAIC Principal Investigators

Vuk Marojevic
Testbed Architect

Bo Tang
OAIC-T Architect

Vijay K. Shah
OAIC-C Architect

Joseph Gaeddert
Software Architect

Jeffrey Reed
Outreach

Nishith Tripathi
Broader Impact

Open AI Cellular (OAIC) - An NSF CISE Community Infrastructure Project
OAIC Team

• Talha Faizur Rahman, Postdoc
• Mohammadreza Kouchaki, PhD Student
• Ali Sabri Abdalla, PhD Student
• Joshua Moore, Undergrad

• Vikram Reddy Anapana, PhD Student
• Ta-Seen Reaz Niloy, PhD Student

• Pratheek Upadhyaya*, PhD Student
• Kumar Sai Bondada, MS Student
• Romil Khimraj Balar, MS Student

Open AI Cellular (OAIC) - An NSF CISE Community Infrastructure Project
Getting Involved

Use, explore and contribute to OAIC community infrastructure project.

- We seek industry involvement with building our OAIC community infrastructure, both OAIC-C and OAIC-T.
- We also want to hear your research interests, discuss collaboration opportunities, define R&D directions and joint projects.

Please reach out to us if you are interested in getting involved with OAIC project

- Email: vshah22@gmu.edu, openaicellular@gmail.com (feel free to get in touch other OAIC PIs/Co-PIs.)
- Follow OAIC website for recent updates
Getting Involved

Use, explore and contribute to OAIC community infrastructure project.

- We seek *industry involvement* with building our OAIC community infrastructure, both OAIC-C and OAIC-T.
- We also want to hear *your research interests*, discuss *collaboration opportunities*, define *R&D directions* and *joint projects*.

Please reach out to us if you are interested in getting involved with OAIC project

- Email: vshah22@gmu.edu, openaicellular@gmail.com (feel free to get in touch other OAIC PIs/Co-PIs.)
- Follow OAIC website for recent updates
Backup: AI Challenges in Next-G

While there is lots of optimism in the wireless research community on AI, the reality is that

- There needs to be **sufficient real-world experience at scale** to prove the added expense of AI is justified in improved performance.
- AI in the network needs to be **extensively tested** with the rigor that other elements of the network are tested today.

Some key research questions

- How do we design cellular networks to be more AI suitable at various locations?
- What methodologies apply to test AI performance at various locations in the network?
- How do we test for cross-layer interactions of AI deployed at various points in the network?
- Can testing of AI be used to find configuration failures as well as to ensure secure configurations?
O-RAN Architecture

- **Non-real time RIC**: enables non-real-time control and optimization of RAN elements and resources, AI/ML workflow over A1 interface.
- **Near real time RIC**: control and optimization of O-RAN elements and resources via fine-grained data collection and actions over E2 interface.
- **O-DU**: hosts RLC/MAC/PHY layers
- **O-CU-CP**: hosts the RRC and the control plane part of the PDCP protocol.
- **O-CU-UP**: hosts the user plane part of the PDCP protocol and the SDAP protocol.
- **xApp**: Independent software plug-in to the Near-RT RIC platform to provide functional extensibility to the RAN by third parties

Control loop timescales:
- Non-real time: \(> 100 \text{ ms} \)
- Near-real time: \(10\text{ ms} – 1000\text{ ms} \)
- Real time: \(< 1\text{ ms} \)

Based on two core principles
- **Openness**
- **Intelligence**

Flexibility by design
- Open interfaces and APIs

3GPP Split 7-2x
- RAN Intelligent Controllers (RICs)
 - Abstract the networks
 - Allow telecom operators to implement custom control logic